Search results for "Generalized minimal residual method"

showing 7 items of 7 documents

A damping preconditioner for time-harmonic wave equations in fluid and elastic material

2009

A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed

Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESNavier equationMathematics::Numerical AnalysisMultigrid methodHelmholtz equationäärellisten elementtien menetelmäMathematicsElastic scatteringNumerical AnalysisNavierin yhtälöPreconditionerApplied MathematicsMathematical analysispohjustinAcoustic waveWave equationAlgebrallinen multigrid-menetelmäHelmholzin yhtälöGeneralized minimal residual methodComputer Science::Numerical AnalysisFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsClassical mechanicsModeling and SimulationPreconditioner
researchProduct

Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation

2019

International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.

ComputationFOS: Physical sciences010103 numerical & computational mathematicsFixed point01 natural sciencesRegularization (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Davey-Stewartson equationsFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Mathematics[PHYS]Physics [physics]Nonlinear Sciences - Exactly Solvable and Integrable SystemsScattering010102 general mathematicsStatistical and Nonlinear PhysicsD-bar problemsNumerical Analysis (math.NA)Condensed Matter PhysicsFourier spectral methodGeneralized minimal residual methodIntegral equationAlgebraic equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Limit
researchProduct

An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

2007

A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower freq…

Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESMathematics::Numerical Analysissymbols.namesakeMultigrid methodQuadratic equationHelmholtz equationäärellisten elementtien menetelmäMathematicsNumerical AnalysisPreconditionerApplied MathematicspohjustinMathematical analysisAlgebrallinen multigrid-menetelmäHelmholzin yhtälöComputer Science::Numerical AnalysisGeneralized minimal residual methodFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsModeling and SimulationHelmholtz free energysymbolsPreconditionerLaplace operatorJournal of Computational Physics
researchProduct

A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems

2010

In this work a fast solver for large-scale three-dimensional elastodynamic crack problems is presented, implemented, and tested. The dual boundary element method in the Laplace transform domain is used for the accurate dynamic analysis of cracked bodies. The fast solution procedure is based on the use of hierarchical matrices for the representation of the collocation matrix for each computed value of the Laplace parameter. An ACA (adaptive cross approximation) algorithm is used for the population of the low rank blocks and its performance at varying Laplace parameters is investigated. A preconditioned GMRES is used for the solution of the resulting algebraic system of equations. The precond…

Numerical Analysiseducation.field_of_studyMathematical optimizationAdaptive algorithmLaplace transformApplied MathematicsPopulationMathematicsofComputing_NUMERICALANALYSISGeneral EngineeringSolverSystem of linear equationsGeneralized minimal residual methodMatrix (mathematics)Applied mathematicseducationBoundary element methodMathematicsInternational Journal for Numerical Methods in Engineering
researchProduct

Hierarchical fast BEM for anisotropic time-harmonic 3-D elastodynamics

2012

The paper presents a fast boundary element method for anisotropic time-harmonic 3-D elastodynamic problems. The approach uses the hierarchical matrices format and the ACA algorithm for the collocation matrix setup and a preconditioned GMRES solver for the solution. The development of this approach for the anisotropic case presents peculiar aspects which deserve investigation and are studied in the paper leading to the employed computational strategy and its effective tuning. Numerical experiments are presented to assess the method accuracy, performances and numerical complexity. The method ensures adequate accuracy allowing remarkable reductions in computation time and memory storage.

Fast BEMMathematical optimizationCollocationTime harmonicMechanical EngineeringComputationSolverLarge scale computationsGeneralized minimal residual methodComputer Science ApplicationsMatrix (mathematics)Modeling and SimulationGeneral Materials ScienceAnisotropyAnisotropic elastodynamicAlgorithmBoundary element methodCivil and Structural EngineeringMathematics
researchProduct

A fast dual boundary element method for 3D anisotropic crack problems

2009

In the present paper a fast solver for dual boundary element analysis of 3D anisotropic crack problems is formulated, implemented and tested. The fast solver is based on the use of hierarchical matrices for the representation of the collocation matrix. The admissible low rank blocks are computed by adaptive cross approximation (ACA). The performance of ACA against the accuracy of the adopted computational scheme for the evaluation of the anisotropic kernels is investigated, focusing on the balance between the kernel representation accuracy and the accuracy required for ACA. The system solution is computed by a preconditioned GMRES and the preconditioner is built exploiting the hierarchical …

Numerical AnalysisMathematical optimizationCollocationRank (linear algebra)PreconditionerApplied MathematicsGeneral EngineeringDegrees of freedom (statistics)SolverGeneralized minimal residual methodMatrix (mathematics)Applied mathematicsBoundary element methodMathematicsInternational Journal for Numerical Methods in Engineering
researchProduct

A fast 3D dual boundary element method based on hierarchical matrices

2008

AbstractIn this paper a fast solver for three-dimensional BEM and DBEM is developed. The technique is based on the use of hierarchical matrices for the representation of the collocation matrix and uses a preconditioned GMRES for the solution of the algebraic system of equations. The preconditioner is built exploiting the hierarchical arithmetic and taking full advantage of the hierarchical format. Special algorithms are developed to deal with crack problems within the context of DBEM. The structure of DBEM matrices has been efficiently exploited and it has been demonstrated that, since the cracks form only small parts of the whole structure, the use of hierarchical matrices can be particula…

Mathematical optimizationHierarchical matricesCollocationPreconditionerDual boundary element methodApplied MathematicsMechanical EngineeringMathematicsofComputing_NUMERICALANALYSISContext (language use)SolverCondensed Matter PhysicsSystem of linear equationsLarge scale computationsGeneralized minimal residual methodMatrix (mathematics)Materials Science(all)Mechanics of MaterialsModelling and SimulationModeling and SimulationFast solversGeneral Materials ScienceSettore ING-IND/04 - Costruzioni E Strutture AerospazialiAlgorithmBoundary element methodMathematicsInternational Journal of Solids and Structures
researchProduct